(x)(x2?1) now we can see that the (x2?1) can be further factored. x+1 (x)(x?1)(x+1) we now have two expressions of (x+1), one on the numerator and one on the denominator, which means we can cancel them out and simply put 1 in the numerator. 1 x(x?1) and once we distribute the x back in the denominator, we will have: 1 x2?x our final answer is j, 1 x2?x .
Get the answer
Category: computerinformation |
Author: Selma Yafa
Related Questions
(x)=(x?3)(2x?8) find the zeros of the function. write the smaller solu
literature5 Minutes ago

(x+1) the rational expression 2(x-1)(4x+1) a. one restriction on x. b
science7 Minutes ago

(x+1)^2=0 (x-1)^2=0 (2x-1)^2=0 (2x+3)^2=0 x^2+4x+4=0 x^2-6x+9=0 x^2+6
ecology12 Minutes ago

Category
business
Sagi Boris 55 Minutes ago
(x+4) solve for x: = 2. (1 point) 3 o x = 2 o x= 10 3 2 x = o x= -2
geography
Valko Tomer 1 Hours ago
(x+9) (x-9) step-by-step explanation: this expression is in the form a2 ? b2, so use the difference of squares rule to factor the expression: x^2-81=x
business
Sagi Boris 1 Hours ago
(x-13.4)^2+(y+2.6)^2=100what is its center?(_,_)what is its radius?_units